Share This Article
Research Frontiers
of Medicinal Plants
DOWNLOAD


下載
人參達瑪烷皂苷Rh2的藥理作用簡述



下載
達瑪烷皂苷Rg1的藥理作用簡述



下載
達瑪烷皂苷Rb1的藥理作用簡述



下載
達瑪烷苷元原人參三醇PPT的藥理作用簡述



下載
達瑪烷苷元原人參二醇PPD的藥理作用簡述


 

達瑪烷苷元PPD抑制紫外線誘導的MMP表達

人參達瑪烷皂苷Rg1能預防麻醉劑利多卡因的副作用
利多卡因,作為麻醉劑的物質,通常用於表面和脊髓麻醉。然而,研究表明,利多卡因可能誘發短暫神經症狀和馬尾綜合徵。 湖南長沙中南大學的研究人員發現:人參中的達瑪烷皂苷Rg1(皂苷Rg1)能夠顯著降低利多卡因誘發的的神經細胞凋亡。 這個研究利用Jurkat細胞,以及流式細胞儀和末端脫氧核苷酸轉移酶介導的缺口末端標記法(TUNEL )對此進行了評估。研究數據表明,培養Jurkat細胞在達瑪烷皂苷Rg1存在的情況下,防止了利多卡因誘導的細胞凋亡。 為了探討人參皂苷Rg1對細胞凋亡通路的影響,研究人員...
LANGUAGE 語言選擇

MMP-1 is an enzyme which is able to digest collagen in the skin, and overe-exposure to UV will excessively activate MMP-1, thus leads to collagen loss in the skin, acceleartes the skin aging process. New findings in this article suggest dammarane sapogenin PPD could help the skin resist against UV abuse and retard skin aging.

Related Articles
20-O-β-d-Glucopyranosyl-20(S)-Protopanaxadiol Suppresses UV-Induced MMP-1 Expression Through AMPK-Mediated mTOR Inhibition as a Downstream of the PKA-LKB1 Pathway.
J Cell Biochem. 2014 May 12;
Authors: Shin DJ, Kim JE, Lim TG, Jeong EH, Park G, Kang NJ, Park JS, Yeom MH, Oh DK, Bode AM, Dong Z, Lee HJ, Lee KW

Abstract
Various health effects have been attributed to the ginsenoside metabolite 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol (GPD); however, its effect on ultraviolet (UV)-induced matrix metalloproteinase (MMP)-1 expression and the mechanism underlying this effect are unknown.
We examined the inhibitory effect of GPD on UV-induced MMP-1 expression and its mechanisms in human dermal fibroblasts (HDFs).
GPD attenuated UV-induced MMP-1 expression in HDFs and suppressed the UV-induced phosphorylation of mammalian target of rapamycin (mTOR) and p70(S6K) without inhibiting the activity of phosphatidylinositol 3-kinase and Akt, which are well-known upstream kinases of mTOR.
GPD augmented the phosphorylation of liver kinase B1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK), which are inhibitors of mTOR, to a greater extent than UV treatment alone.
Similar to GPD, 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (AICAR), an activator of AMPK, augmented UV-induced AMPK phosphorylation to a greater extent than UV treatment alone, resulting in the inhibition of MMP-1 expression. AICAR also decreased the phosphorylation of mTOR and p70(S6K) .
However, compound C, an antagonist of AMPK, increased MMP-1 expression. In HDF cells with AMPK knock-down using shRNA, MMP-1 expression was increased.
These results indicate that AMPK activation plays a key role in MMP-1 suppression. Additionally, the cAMP-dependent protein kinase (PKA) inhibitor, H-89, antagonized GPD-mediated MMP-1 suppression via the inhibition of LKB1.
Our results suggest that the suppressive activity of GPD on UV-induced MMP-1 expression is due to the activation of AMPK as a downstream of the PKA-LKB1 pathway.
J. Cell. Biochem. © 2014 Wiley Periodicals, Inc.
PMID: 24821673 [PubMed - as supplied by publisher]

Source: PPT and PPD

© 2015 Yao Hao International Biotechnology Co., Ltd. All Rights Reserved.   Designed by Unique